Fire security in the operating room

C.Plasman CHU Brugmann - One Day Surgery February 2011

Introduction

Few reports

- ± 100-650/year USA?
- 10 à 20 % severe burns
- Stable
- More frequent during ambulatory surgery
- Can be avoided (reduced) with a clear understanding of the mechanisms

Risk factor in ambulatory surgery

- Nr of operations
- Type of anesthesia
- Type of surgery
- Lack of drill
- Rapid turn over

Table 2. Mechanisms of Injury	\frown			
	MAC (n = 121), n (%)	GA (n = 1,519), n (%)	RA (n = 312), n (%)	
Respiratory event	29 (24%)†	337 (22%)	11 (4%)†	
Inadequate oxygenation/ventilation	22 (18%)*†	33 (2%)*	5 (2%)†	
Cardiovascular event	17 (14%)	253 (17%)	23 (7%)	
Equipment failure/malfunction	25 (21%)†	199 (13%)	8 (3%)†	
Cautery fires	20 (17%)*†	10 (1%)*	1 (0%)†	
Related to regional block	2 (2%)†	7 (0%)	168 (54%)†	
Inadequate anesthesia/patient movement	13 (11%)*†	42 (3%)*	7 (2%)†	
Medication related	11 (9%)	95 (6%)	11 (4%)	
Other events‡	24 (20%)*	586 (39%)*	84 (27%)	

* P < 0.025 monitored anesthesia care (MAC) vs. general anesthesia (GA) claims. † P < 0.025 MAC vs. regional anesthesia (RA) claims. ‡ Other events includes surgical technique/patient condition, patient fell, wrong operation/location, positioning, failure to diagnose, other known damages, no damaging event, and unknown.

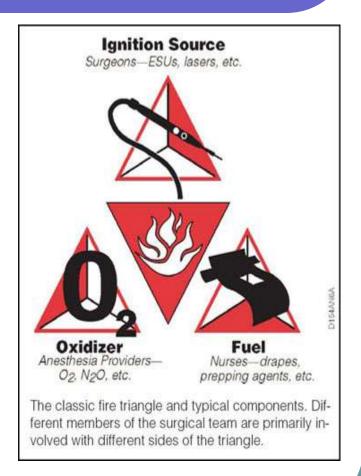
after Electrocautery (ff = 20)				
Characteristic	n (%)			
Aged 70 yr or older (n = 20)	7 (35)			
ASA PS III-V (n = 16)	3 (19)			
Head, neck, face, or biopsy* (n = 20)	19 (95)			
Oxygen administration device (n = 19)				
Facemask	7 (37)			
Nasal prongs	9 (47)			
Unknown device	3 (16)			
Oxygen flow rate, I/min (n = 9)				
< 5	5 (56)			
≥ 5	4 (44)			
Fuel† (n = 16)				
Drapes	13 (81)			
Alcoholic prep solutions	5 (31)			
Facial hair	1 (6)			
Substandard care, % (n = 14)	7 (50)			
Payment to plaintiff, % (n = 18)	16 (89)			
Median (range of payments) (n = 16)	\$71,375 (\$8,175-321,323)			

Table 5. Characteristics of MAC Claims Resulting in Burns after Electrocautery (n = 20)

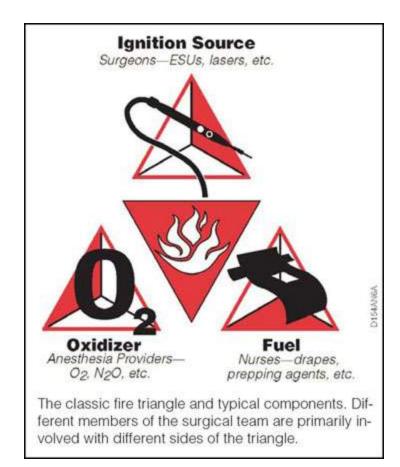
Percentages are based on claims without missing data. Denominators are listed in parentheses. Payments were adjusted to 1999 dollars using the Consumer Price Index.

* Only one procedure was not located on the head, neck, or face. It was removal of arm lesions. † Fuel was unknown in four claims. In three claims, alcohol and drapes were ignited.

ASA PS = American Society of Anesthesiologists physical status.

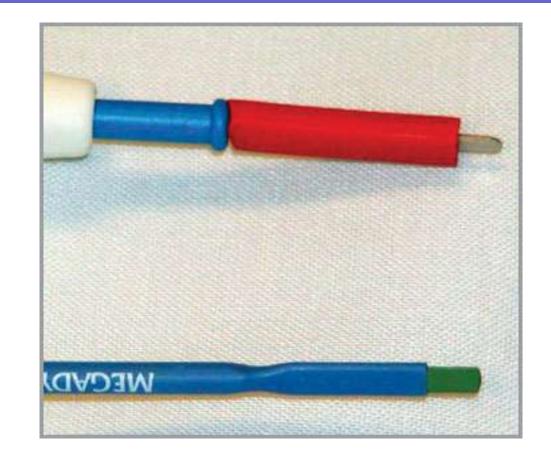

The « never » events:

- Fire
- Wrong site surgery
- Foreign body (instrument) left in the patient
- Medicare will soon refuse to reimburse
- Understanding of the mechanisms is of upmost important


« Recept » : the fire triad

- Ignition source
- Oxygen-rich atmosphere
- Inflammable material (fuel)

- Always found in the O.R.
- Everybody is concerned
 - Prevention = good communication


Ignition source

- Diathermic loop
- « Cold light »
- Laser
- Defibrillator

Ignition source (2) : diathermic loop

- Used in 85%, 100% fire during MAC (Anesthesiology, feb 2006)
- Importance of alarm maintenance
- Original insulated point *
- Single use
- Insulated holster when not in use
- « Active electrode monitoring system »** recommended for laparoscopy

« Cold light » K. Hindle, Surg. Endosc (2009)23;1720

- T° at the extremity of the cable: 119.5 à 268.6 °C
- Fire on the drape : 3-6 sec
- Cutaneous lesions at distance of the skin
- Proportional tothe duration of contact

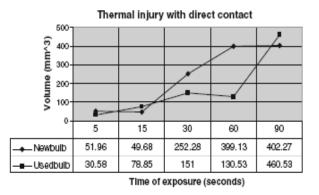


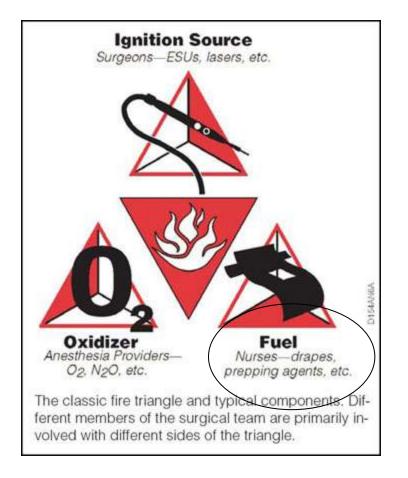
Fig. 2 Volume of injury as a function of time and bulb status

« Cold light » Yavuz, 2006,Surg Lapar.Endosc Tecn

- T° at the extremity of the laparoscope: 60-100°C
- Contact to the intestine: histological lesions after 5 sec !

Very potent

- Ignition of drapes, hair, tubes...
- Reflection with hazardous fire (wax, mirror, surgical instruments...)

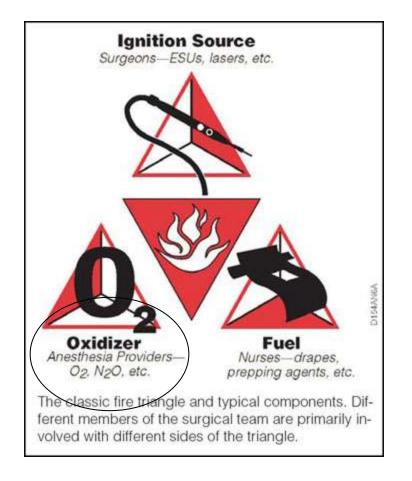

Laser and the endotracheal tube

- Use of « laser-resistant » endotracheal tube
- Fill cuff with physiological serum + methylene blue
- Communication between surgeon and anesthesiologist when a laser is used
- Reduce O2 concentration in anesthetic gas mixture, no N2O, wait for elimination
- Prevention : water, wet drapes, no paper drape, acoustic signal, be careful if blood on tube....

Sources d'ignition : laser

Figure 2. Demonstration of rocket-like flames shooting from a tracheal tube caused by laser ignition of the tube with 100% oxygen flowing. Image provided courtesy of ECRI Institute.

Fuels


- Patient
 - Hair
 - GI gases :
- Agents : ether, acetone, aerosol spray, alcohol), dye,
- Drapes, , mask, mattress, blanket, surgical gauzes,...
- Ointment : petrolatum, paraffin
- Anesthesia circuit, mask
- Catheter
- Cuffs TA

Surgical Drape Flammability

(Goldberg, AANA, 2006, vol 74, n5)

- Direct Application of diathermy : no ignition « non-flammable drapes »
- Danger if bipolar electrocautery ! (electrical arch)
- Speed of ignition related to Fi O2

Drape	21%	35%	100%
А	7.47 ± 1.38	2.58 ± 0.63	1.54 ± 0.43
В	7.44 ± 1.5	2.61 ± 0.51	1.42 ± 0.35
С	7.41 ± 1.35	2.53 ± 0.45	1.6 ± 0.4
D	7.35 ± 1.45	2.76 ± 0.49	1.58 ± 0.49

- Fire more rapid if O2-rich atmosphere
- Drapes create « bubbles »
- Reduce FiO2 or replace with compressed air
- Ventilate surgical field with aspiration or continuous air flow
- No N2O
- Use cuffed tube if oral surgery
- Tracheotomy : no diathermy or stop O2

Other ASA recommandation

- Oral surgery : continuous aspiration
- Control of drapes dressing (bubble)
- Head and neck surgery :
 - MAC : light sedation, limited O2
 - GA : tube or LMA without gas leak
 - Hair or beard protection with gel like KY

In case of fire....

- Importance of the detection (flame, odor, smoke, sound, drape discoloration)
- Stop operation
- Stop O2, endotracheal tube withdraw *
- Stop fire (water, physiological serum, CO2 extinguisher)
- Stop gas inlet
- Burn care for patient
- Tube examination (fragment)
- Planning following training (drill)
- Fire resistant doors

Importance of the prevention

- Detector
- Springler
- Fire hydrant
- Extinguisher
 - Look at the type of fire : A, B, C,D, E
 - Look at the type of extinguisher : water, CO2, powder

- Class A : wood, paper, tissue, PVC...
- Class B : oil, paint, benzine...
- Class C : gas
- Class D : metal
- E : electrical fire

Never.....

